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J. Phys.: Condens. Malm 4 (1992) 864H670. Printed in the UK 

REVIEW ARTICLE 

Lamellar phases and disordered phases of fluid bilayer 
membranes 

G Porte 
Omupe de Dynamiquc des Phasea Condcnsks (CNRS-UA 233) and GDR ‘Filw 
Molhlaires  Flaibles’. USTL-Case 026, 34095 Montpellier CLda 05, France 

Receivcd 19 June 1992, in final form 27 July 1992 

AbstncL Statistical ensembles of random geometrical shapes pervade compla fluid 
physics. Initially onedimensional c u m  in space were mmt thoroughly studied due Io 
the many applications ot such ensembles to the conformation and dynamics of poiymem. 
But today, ensembles of twodimensional membranes also attract much attention. Physical 
realizations of such surfaces include surfactant bilayers which spontaneously self assemble 
from amphiphilic molecules in solution. At the present time, two different dilute phass  
of fluid membranes have been well characterized which correspond lo different large 
a l e  amngemenls for the surfaces: the swollen lamellar phase (L) and the sponge 
phasc (4). In this brief review, we sum up what is undemtmd at the p w n t  time of 
t h c x  phases ol surfaces. The role ot the bending elasticity of the membrane in the 
phase stability is panicularly emphasized. 

1. Introduction 

In aqueous surfactant solutions, the amphiphilic molecules self-assemble reversibly 
into a variety of spatially organized structures. These include various mesophases (in 
concentrated samples) and their disordered analogues. Under appropriate conditions 
(geometry of the amphiphilic molecules, salinity of the aqueous solvent, ...), there is a 
preference for sheet-like hidimensional assemblies: it is well known that the smectic 
lamellar phase occupies a large central area in the phase diagram of most amphiphilic 
systems. 

In the early 19% Ekwall et a1 [l] noticed that, for several ternary systems (ionic 
surfactant/short-chain aliphatic alcoholshater), the domain of stability of the lamellar 
phase extends very far towards the water corner of the phase diagram. At that time, 
however, no scattering technique capable of investigating structures of very large 
spatial periodicity was available and this crucial observation had to be kept on one 
side. 

Later on, numerous observations ([2] and references therein) similar to those of 
Ekwall were reported for a large variety of amphiphilic systems, ranging from the 
simplest binary non-ionic surfactant solutions to the most complex systems invoking 
five components surfactant, cosurfactant, water, salt and oil. Besides the dilute 
lamellar smectic phase L,, the so-called anomalous isotropic phase L, was soon 
suspected to be a dilute phase of fluid bilayers as well, but with a different large-scale 
arrangement. In the meantime, small-angle neutron scattering and high-resolution 
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x-ray scattering were introduced and the structure of L, and L, could thus be 
investigated in detail. La was then proved to consist, as expected, of a regular stack of 
parallel bilayers with a periodicity d increasing with dilution. On the other hand, the 
structure of L, revealed no long-range order, the bilayers being multiconnected over 
macroscopic distances along the three directions of space (see figure I@)). Based 
on reliable characterizations of structures, our understanding of these phases has 
deepened quickly in recent years. 

Fylre 1. (0) lbo nearby bilayers in the L, phase: 
(b) the formation of one elementlly 'passage'; (c) 
a schematic picture of the 4 structure. 

I d  
/ 

As a matter of fact, the experimental evidence for phases of fluid amphiphilic 
bilayers being stable in the dilute range truly opened up a new field in the physics 
of complex fluids. At high dilution, the average distance between the membranes is 
large compared with their thicknas and the range of direct molecular interactions. 
In this limit, they can be considered as being subjected to only one constraint of 
non-intersection. Since the total area of membrane in the sample is fixed by the 
total amount of amphiphiles in the phase, but not by any external constraint, the 
surface temion of the bilayer is vanishingly small. On the other hand, since the 
amphiphiles prefer to lie in a locally bilayered structure, there will be a substantial 
excess energy to be spent at the edge if one tries to increase the sue of an initially 
microscopic hole in the membrane. The bilayer may therefore be considered as 
free of edges and seams (a similar argument indeed working symmetrically for the 
case of seams). A degree of freedom remains, however, for the membrane to bend 
into various configurations allowed by the constraint of non-intersection and by the 
limited volume of the sample where it lives. In this frame, the bending elasticity of 
the bilayer is the only relevant energetic quantity that weights the probability of one 
allowed bent conformation versus the others. So, according to these features, we are 
naturally driven towards especially interesting theoretical objects in statistical physics: 
random surfaces, for which dilute phases of fluid membranes in amphiphilic systems 
provide a perfect experimental realization [3]. Although the statistical problem is SO 

expressed in a particularly simple and unambiguous way, its resolution in complete 
generality is actually a tremendous task that seems currently totally unattainable: the 
basic difliculty arises from the fact that the topology of the surface is not fixed U 

ption. Therefore, our present understanding was obtained instead from alternate and 
intricate progresses in experimental obsemtions and in theoretical considerations. 
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The outline of this short review actually reRects the intricacy involved. In section 2, 
we rmll the unique features of the bending elasticity of bidimensiollal fluid films 
versus that of unidimensional threads. In section 3, we summarize the experimental 
characterization of La and L, and discuss their relative stability in the light of 
the membrane elasticity. The random surface model for is brieRy described in 
section 4. The remarkable scale-invariance is presented in section 5. In sections 6 
and 7 two important issues are presented, respectively associated with L, and the 
so-called Helfrich steric interaction in La and the hidden symmetry in &. Section 8 
draw conclusions by summing up the open issues. 

2. Bending elasticity of fluid Rlms 

The bending elasticity of a bidimensional sheet, fluid within its surface, shows some 
unique features compared with that of unidimensional flexible thread. 

For a thin thread with isotropic cross section, the elastic energy spent upon 
bending takes the form: 

d E  = i K c 2 d l  

where c is the local curvature imposed on the length element dl. Only one bending 
modulus K has to be introduced, having the dimension of energy times length. A 
natural scale length, therefore, immediately comes to mind at a finite tempemure T: 

(1 )  = K/k,T 

which is the well known persistence length [4]; it separates the short scales at which 
the thread is stiff from the long scales at which the thread essentially behaves as a 
random walk. 

In the case of a bidimensional film isotropic within its surface, the most general 
expression for the elastic energy has been derived by Helfrich and has the form [SI: 

where c1 and e, are the two principal curvatures and dA the area element. Three 
quantities are therefore required to characterize the elasticity: K the mean curvature 
modulus, the gaussian curvature modulus, and co the spontaneous curvature of 
the film. 

Note, however, that bilayers are built up with two identical monolayers k e d  
opposite to each other and that the solvent is identical on both sides. Hence, bilayers 
are locally symmetrical with respect to their midsurface. The energy spent upon 
bending must therefore be invariant upon changing the signs of both c1 and e,, then 
c,, vanishes identically. Expression (3) for the bending elasticity of symmetric bilayers 
then reduces to: 

dE=  [ ~ K ( ~ ~ + c ~ ) ~ + ’ 1 7 c ~ c ~ ] d A .  (3’) 

On the other hand, since K and E have the dimension of energy, there is no 
immediate feeling for a persistence length: this is an important difference from the 
unidimensional case. 
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Actually, K and x play very different roles 161. K is related to the energy 
spent for a locally cylindrical deformation of the surface: it is therefore involved in 
any sinusoidal wave-like curvature mode of the surface. So its effect on the bending 
statistics of the surface is to control the average square amplitude of the thermal 
bending modes (just like the rigidity modulus for thin thread). On the other hand, 
the role of i? has no unidimensional counterpart. Let us recall the Gauss-Bonnet 
theorem, which states that the integral of the gaussian curvature over a given surface 
with no edges is a topological invariant. More precisely, we have: 

J! c , 5 d A  = 47r(np - nh) (4) 

where np is the number of disconnected parts of the total surface A and nh is the 
number - of ‘connections’ or ‘handles’ of the surface. Therefore, it is clear in (3’) that 
K works as the chemical ptential for the degree of connectivity of the structure. 
Strongly negative values of K favour the formation of many disconnected pieces with 
no rims, l i e  spherical vesicles, while positive values will favour the formation of one 
large aggregate, preferably having a multiconnected structure (high ‘genus’ surface, 
see figure l(c)). Then plays its role each time a structural transformation involves 
a topological change for the membranes. On the other hand, R has no effect as long 
as curvature fluctuations take place at constant topology or degree of connection. In 
this latter case, only K is involved. 

3. Structures and phase behaviour 

At the present time, two dilute phases of fluid membranes have been well 
characterized: the swollen lamellar phase La and the so-called anomalous isotropic 
phase (or sponge phase). Both phases have been shown to consist of infinite (or 
almost) membranes, but with very different large-scale average arrangements. The 
structure of La is simpler to describe ([7] and references therein, [8-11]). Its texture 
in polarized microscopy shows focal conics and oily streaks which are the unambiguous 
signature of a quasi-long-range smectic order. Further investigations using x-rays or 
neutron scattering reveal the correlative existence of a Bragg peak (see figure 2), the 
position of which is consistent with the idea of parallel bilayers, regularly stacked 
normal to the direction of the director of the phase. In these respects, the swollen 
La phase is nothing different from the classical lamellar phase usually found in the 
concentrated part of the phase diagram. However, the intriguing fact here is the 
persistence of the long-range smectic order at high dilution, in spite of its very large 
periodicity compared with the range of direct molecular interactions. 

In contrast, the optical obsewations and the scattering patterns in the samples 
reveal neither orientational nor positional long-range order. The structure is less 
easy to visualize and, so far, has not been proved unambiguously. However, 
extensive experimental investigations combining x-rays and neutmn scattering data, 
together with measurements of transport properties [12-151 (conductivity and self- 
diffusion of the components) strongly suggest a structure similar to the picture drawn 
schematically in figure l(c). This picture was further supported later on by freeze- 
fracture electron microscopy [16]. It is easier to visualize the main features of this 
structure following the steps shown in figure 1. Starting from La, it is easy to imagine 
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the formation of one individual connection by local fusion of two adjacent bilayers. 
Doing so we induce one elementary change of the topology of L,. SpOntaneOU 
proliferations of such ‘connections’ on both sides of each membrane will, as a first 
effect, kill the smectic order of the initial lamellar phase at some stage, and then 
ultimately result in the formation of the structure drawn in figure l(c) which, we 
think, appropriately represents the basic features of the structure. These features 
are as follows: 

(i) the structure is isotropic with no long-range positional order; 
(ii) the bilayer is bent almost everywhere, with its principal curvatures of opposite 

sign (saddle-like local shape), so that it is, on a large scale, multiconnected to itself 
in the three directions of space; 

(iii) as the membrane is intrinsically symmetrical with respect to its midsurface, 
we expect it to divide space in two, on average, equivalent subvolumes in most cases 
(this symmetry may be broken in some cases, as will be discussed in section 7; 

(iv) in spite of the absence of long-range order, the scattering pattern (x-rays 
or neutron, see figure 3) clearly shows a well defined maximum, corresponding to a 
structural length which we identify with the average diameter of the ‘connections’ or 
‘passages’. 

-2.4 0.00 0.06 0.12 
Q (A- l )  

Figure 2. A typical scattering pattern of a h Plgure 3. A typical scattering pattern of an L, 
swollen sample exhibiting Brag singularity. System: sample. There is no Brag singularity, but still 
cPCVn-haanolhrine; Ti = 360 A, + = 0.094. one notes a broad co-Elation maximum. System: 

cPCl/n-hexanohrinc: d = 160 A, + = 0.187. 

There is a priori no reason for the structure of L, and &, as shown in figure 1, 
not to be decorated by small disconnected subunits (such as vesicles, tori or more 
complicated bretzels) of size smaller than 2. Note, however, that the excess mean 
culvature elastic energy involved in such disconnected subunits is at least of the 
order of 8nK. Therefore, a noticeable proportion of disconnected objects will not 
be observed unless is sufficiently negative, so that this excess mean contribution is 
compensated by the gaussian contribution. As a matter of fact, the scaling behaviour 
described in section 5 indicates that the relative amount of membrane in disconnected 
pieces is very small. 
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Since the pioneering observations of Ekwall erul, L, and have been observed 
in a large number of systems. These include the most simple binary systems such 
as C,,E,hter [15]. In this case, the phase diagram is truly bidimensional (we 
neglect pressure as a rather irrelevant field variable) and is usually drawn versus 
the two variables 4, the volume fraction of amphiphde, and T, the temperature. 
For systems involving more than two components (such as the quaternary systems 
ionic surfactanthhortehain alcohol/water/salt) the complete phase behaviour needs 
to be represented in a space of higher dimensionality. However, it is possible to 
represent any two-dimensional sections of the diagram. Appropriate choices for the 
section actually reveal a strikingly similar geometry for the phase behaviour. For the 
quaternary systems for instance [17], we may choose to fur T and the salinity of the 
brine, letting free 4 and the alcohol-to-surfactant ratio or alternately fur T and the 
alcohol-to-surfactant ratio and let free @ and the salinity. Doing so, we fur either 
the properties of the solvent or the chemical composition of the aggregates. Plotting 
the phase behaviour as a function of 6 and the remaining free parameter, which 
we generically denote from now on as x (figure 4(c)), we find a quite remarkable 
geometry in the dilute range. Usually, three phases are seen in this range, depending 
on x. For low x-values, L, takes place, which consists of globular or unidimensional 
micelles. These structures are beyond our present scope and we shall not discuss 
them here. L, and L, take place successively as x increases. Their phase boundaries 
are roughly horizontal in a moderate concentration range, which means that their 
stability is rather independent of the degree of dilution 4. Only in the very dilute 
range can we see strong deviations from horizontality for the phase boundaries. 

In order to interpret the relative positions of the L, and L, domains versus x, 
we turn back to expression (3’) for the bending elasticity of the membranes. A most 
striking difference between the two structures is certainly the difference in topology. 
In the lamellar phase, each presumably infinite bilayer is singly connected to itself 
over its whole area. In contrast, the bilayer in L, is multiply connected to itself 
in the three directions of space. So is here certainly involved. We expect that 
smaller (possibly negative) values of will rather favour La and, conversely, for 
higher (possibly positive) values we rather expect the multiconnected topology of b. 
’Tb investigate this point more deeply, let us remind ourselves that a bilayer consists 
basically of two amphiphdic monolayers fixed opposite to each other in a symmetrical 
structure. In contrast with the bilayer, each monolayer is not in itself a symmetrical 
film and its spontaneous curvature c ~ , ~ ~ ~ ~  is, but exceptionally, not zero. Hence, 
when fmed to each other in a planar bilayer, each monolayer will feel frustrated [3]. 
A possibility, to partially release the frustration, is to allow deviations from the planar 
conformation of the bilayer. When c ~ , ~ ~ ~ ~  is negative (i.e. with concavity towards the 
solvent, figure 5(a)), a more favourable conformation for the bilayer is actually a 
saddle [U, 191. At the level of the midsurface, the mean curvature (c ,  + c 2 )  is stdl 
zero. But considering the mean curvatures of the monolayers at the level of their 
surfaces of inextension (obtained by parallel displacement from the midsurface at 
distances +CC where E is of the order of 6/2) ,  one immediately sees that they have 
identical finite magnitudes and symmetrically negative signs (and are therefore closer 
to the negative values of eo). This intuitive picture can be further formalized starting 
from the bending elasticity of the monolayer: 

dEe,,,,,, = [fKmor.o(C1 + CZ - CU)* + zmonoC1C2I  ‘A ( 5 )  

from which the elasticity of the bilayer can be derived easily provided that we assume 
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F b m  4. (a) The phase diagram of the system 
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NaBr) at fued temperature and salinity. Nalc 
the radial phaw boundaria (fmm 1171). (c) A 
schcmaric phasc diagram in lcrmi of the paramelen 
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that the surfaces of inextension of the monolayers remain at a constant distance c/2 
from the midsurface. We thus obtain [14]: 

-' 
CO c 0 frustration 

F@m 5. (a) h monolayers wilh negative spontaneous cuwature CO. (b) When 
6x4 opposite 10 each olher they 'feel fmtrated.. Note that E1 and E2 represcni the 
respective sulfaces of inextension. 
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It is clear in (6) that negative values of c,, bring a positive contribution to Ebil, 
making the formation of a saddle easier (or equivalently making the formation of 
multiconnected structures such as L, easier). It is interesting, in this picture, to 
note that for all systems the genetic parameter x is known to induce a monotonic 
decrease of CO. In the case of a binary system with non-ionic surfactants it is known 
that the affinity of polyoxyethylene groups for water decreases upon increasing T: the 
polar groups expel bound water molecules, come closer to each other at constant tail 
volume and hence decrease c,,. Similarly, in quaternary systems it has been proved in 
[20] that increasing the relative amount of alcohol in the monolayer actually decreases 
c,,. Also, increasing salinities screen better and improve the electrostatic repulsions 
between the ionic head group; this allows a closer packing of the bead groups and 
the higher salinity ultimately decreases c,,. 

Thus, these considerations of c,, and Fbil actually make sense of the relative 
positions of La and L,, while increasing the generic parameter x. However, they focus 
on the topology and forget fluctuations. If these fluctuations were to be neglected, the 
two phases should be in their ground state (figure 6): L, would consist of perfectly 
flat bilayers and L, would have the structure of one of the many ‘periodic minimal 
surfaces’ currently known. For these two perfectly ordered structures, the mean 
curvature is zero everywhere, so that the difference in elastic energy between them 
only arises from the gaussian term in (3’): the structural transformation takes place 
for R being exactly zero. Several facts actually indicate that neglecting fluctuations 
is not permitted here. First, L, is clearly not long-range ordered. Also, in the 
ground-state picture, the range of stability of the b structure should have zero 
thickness in the x- (or E-) direction. ks soon as E increases beyond zero, where 
La becomes unstable, there is a constant gain of elastic energy in increasing the 
connectivity of the membrane with no limits and the b structure should immediately 
collapse up to the point where anharmonic terms in the elastic energy come into 
play (high concentration). The existence of dilute structures implies that some 
entropic contribution dampens the abruptness of the structural transformation here 
and somehow prevents the collapse over a finite range. This entropic contribution, 
we guess arises from curvature fluctuations. Lastly, as we shall see in a later section, 
the persistence of smectic order in L, at high dilution can be understood in terms of 
the so-called steric interaction between parallel membranes. Actually, this effective 
interaction arises from the interplay between the constraint of non-intersection and 
the spontaneous curvature fluctuations of the membranes. Thus, fluctuations have to 
play a crucial role in the phase behaviour. 

Unfortunately, evaluating the fluctuations is actually a very difficult issue. Things 
are not so bad for the L, phase where the existence of smectic order makes it 
possible to expand any given configuration into classical normal modes [21]. The 
difficulty arises with the b phase where the liquid structure makes such a procedure 
impossible. Hence, more approximate approaches are to be used: the random surface 
model presented in the following section is such an attempt 

4. The random surface model for 5 

This model for the structure of L, was first proposed by Cates et (11 [22] and, later on, 
a more refined version was reported by Golubovic and Luhem!q [23]. The primary 
aim here is quite the opposite to that of the preceding section: to focus on the 
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P@re 6. A schematic represenElion of L, and L, with their 'ground-slate' analogues 
illustrating the d e s  of K and K in their relative stabilities. 

- fluctuations and neglect the toplogy, i.e. emphasize the role of K, forgetting that of 
K. For the sake of simplicity K is therefore set to zero. The space is then coarse- 
grained using a cubic lattice of cell size ( (where ( is essentially of the order of the 
characteristic distance d exhibited by the scattering patterns of L, and b). The cells 
of the lattice are randomly labelled A and B with respective probabilities Q and 1- CJ 
where Q is not determined a priori but rather used as a variational parameter. The 
surface (Le. bilayer) is then forced to lie at the interface between A and B domains. 
One thus obtains a highly randomized model of a non-intersecting surface with no 
edges and seams. It is here assumed to give an appropriate representation of the 

is then simply that of the random mixing of 
labels A and B. It has the well known form 

disorder. The entropy density of 

s = -(k B / c 3 ) [ q i n q  + (1 - q ) l n ( l -  Q)] 

Fknd = (1/(3)8~Q(1 - Q ) K .  

(7) 

and the bending-energy density is heuristically estimated: 

(8) 

For the sake of comparison of phase stabilities, it is necessary to estimate the free- 
energy density of La for which the coarse-graining procedure is not appropriate. Thus, 
the authors adopted the well known expression derived by Helfrich (see section 6): 

FL. = ( 3 7 ~ ~ / 1 2 s ) ( 4 / 6 ) ( k ~ T ) * / K ~ *  (9) 

where 2 = a(1- 4)/+ denotes the interlamellar spacing and a the thickness of the 
membrane. 

From these expressions for the freeenergy densities, the phase behaviour was 
computed numerically as a function of the reduced mean curvature rigidity KIT. 

The important predictions of the model are as follows. 
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(i) At high KIT, the La phase is stable. Upon lowering KIT, the La -t 
transition takes place when, roughly speaking, the mean curvature energy spent 
becomes less than the entrom gained in melting the positional and orientational 
order of the smectic La structure. The L, hase obtained is then symmetrical with 

(ii) Upon further lowering of KIT, the model explicitly produces a spontaneous 
breaking of the V symmetry of L,. This more important issue is discussed in section 7. 

Some questions about this model must, however, be further discussed. The first 
question concerns the coarse-graining procedure. Similar coarse-graining procedures 
are indeed used in the lattice gas models, which proved to be relevant for the statistics 
of random polymers In these cases, however, the cell size of the lattice is indeed 
related to the natural length of the problem-the persistence length-but certainly 
not to the concentration in polymers. In the present case, we mentioned that no 
natural length characteristic of the membrane could be inferred immediately. And 
the question arises of what length ( to use for the cell size of the coarse-grained 
space? Cates er a1 [22] chose ( to be determined by the area density of membrane 
per unit volume of the sample. This choice was justified by the experimental fact 
that the structural length 2, as evidenced from the scatteringgatterns of L, and 
b, actually shows a simple swelling behaviour upon dilution (d - 4-l). We shall 
make sense of this remarkable property in the next section which deals with the 
scale-invariance of the statistics of fluid membranes. 

An important reservation about this model must be underlined, however. The 
random-mag assumption implies that all different labellings of nearby cells have 
the same probabilities. Hence, one particular labelling giving to the surface the form 
of the coarse-grained analogue of a hemispherical cup locally must involve the same 
elastic energy as one leading to the formation of a local saddle (figure 7). This implies 
explicitly that R = - K  (rather than = 0, as initially proposed by the authors of 
[22, 231) so that the elastic energy is of the form: 

respect to the V parameter (V = 1 - V = i). P 

d E ,  = iK(c: + c:)dA ( 10) 

where the relative signs of c, and c2 are irrelevant. Any significant departure from 
this specific situation not only affects the heuristic expession of Fknd (8) (which 
could presumably be improved by the addition of a K-dependent contribution), it 
also makes the random-mixing assumption less and less justified [14] since saddles (or 
conversely hemispheres) will be favoured against hemispheres (conversely saddles), 
thus inducing stronger and stronger correlations between nearby cells. 

Nevertheless, from this section and the preceding one, we understand, at least 
qualitatively, the roles of the two rigidities K and 
is involved due to the change of topology and is controlled by the experimentally 
tunable parameter x via cu, the spontaneous curvature of the amphiphilic monolayer. 
K controls the amplitude of the fluctuations and, in this respect, is presumably 
involved in the offset of smectic order when the La-to-I, transition takes place. 

in the phase stability. 

5. Sale-invariance 

underlined in the previous sections, the rationalization of the phase behaviour 
in terms of membrane elasticity remains rough and qualitative due to the extreme 
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dYculty of a fully consistent computation of the free energy of the disordered 
structure of b. There is a point, however, where more quantitative predictions 
can be made: the evolution of the free energies as a function of dilution. 

Tl~ese scaling laws are actually consequences of the unique feature of the 
membrane-bending elasticity, already undedied in section 2 the reduced rigidity 
moduli K/kBT and f7 /kBT are pure numbers. This means that the elastic energy 
in (3’) is invariant with respect to any isotropic dilation. A dilation of ratio X changes 
cl and 9 into cl/X and c, f X and dA into XZdA so that dE,, remains invariant. 

Let us consider two systems [14] (figure 8) involving respective total areas of 
membrane A and A’ = X2A, confined in respective volumes V and V’ = X3V. 
Note that for both L, and L, structures, the ratio V I A  (respectively V‘IA’) can 
be identilied essentially with the characteristic distance d(d ) up to some geometrical 
prefactor of order unity. However, the argument is general enough to be applied even 
in the case of a Structun? exhibiting no well defined characteristic distance. Thus, we 
work it out keeping A and V (rather than A and 2) as the parameters defining the 
considered situation. Apart from the small thermal ripples of wavelength smaller than 
d and 2, any configuration of the first system corresponds to a dual configuration of 
the second system through the isotropic dilation of ratio A. These dual configurations, 
having the same elastic energy, have identical statistical weights and therefore bring 
the same contribution to the free energy of each system. This means that the 
contribution of the large-scale (i.e. excepting the small ripples) configurations of the 
membranes to the free energy is scale-invariant just l i e  the bending elastic energy. 
Since this contribution must also be extensive it necessarily scales as A3/VZ.  The 
next step is to include the contribution of the thermal small ripples. In the rigid 
limit (KIT B 1) these modes are independent, so that their contribution to the 
free energy is simply proportional to A (or A’ = X2A). Putting together the two 
contributions, we arrive at the free energy of the necessary form 

-+ 

- 

F =  p,A+ B , ( K , r , T ) A 3 / V Z  (11) 

A / V  being proportional to 4 (4 = 6A/V) ,  equation (11) can be immediately 
translated in terms of the freeenergy density: 

f = F f  V = ~ $ 4  + B+( K ,  E ,  T)43 (12) 

where B+( K ,  x, T )  is an unknown function of K ,  x and T .  We can go one step 
further, noting that K and E are involved in thejartition function only in their 
reduced form: KIT and R f T .  Hence, B + ( K ,  K , T )  necessarily has the form 
T f P ( K / T , X f T ) .  Thus, finally, the free-energy density of dilute phases of fluid 
membranes should have the form 

f = F / V = p r d + T P ( K / T , R / T ) 4 3 .  (13) 

The first term in (13), linear in 4, is trivial and does not affect the stability and 
the physical properties of the phases. The second term, which scales as @?, expresses 
the scale-invariance of the statistics of membranes and therefore plays the central 
role. 
WO basic conditions, necessary for the scale-invariance to apply, must be 

underlined The first one is that the phase consists of infinite membranes only: a 
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F@m 7. Hemispberical c u p  and saddles and their F@m 8. Scale-invariance: the laystem and X- 
coarsc-pined analogue in the model of section 4. system. 

substantial proportion of disconnected subunits will bring in the contribution of their 
entropy of dispersion, which is indeed not scale-invariant. Secondly, the interactions 
between membranes must be restricted to the constraint of non-intersection: any 
molecular force having a finite range comparable to 2 will introduce a scale- 
dependent contribution into the membrane's Hamiltonian and, therefore, break the 
scale-invariance. These conditions are actually obeyed for L, and &, at least in the 
moderate dilution range [24]. 

The mnsequences of scale-invariance are of crucial importance. It implies that 
dilution acts on the structure of a given phase as a simple dilation, any average 
characteristics length being simply proponional to the inverse volume fraction of 
membranes, i.e. 2 - +-I. The scattering pattems of one given phase at different 
concentratiors along a dilution line (constant KIT and F / T )  should remain 
identical when plotted as a function of the reduced wave vector Q = qz (i.e., q /+ )  
[25]. A convincing experimental illustration of this expectation is shown in figure 9. 
This also means that if one given phase is found stable at one given concentration 
it remains stable all along the corresponding dilution line; so no phase transition 
is expected upon variation of + alone. The horizontality of the phase boundaries 
observed in the moderate concentration range (see section 3) appears here as a 
direct consequence of the scale-invariance of the membranes statistics. 

.I - 
I ai6 .oi 

1 ~ i g u m  9. Scattering pattem of L, at various 
0 dilutions in reduced units. System: Ambrine (from 

[251). 

Moreover, expression (13) for the free-energy density can be used to derive scaling 
laws for other measurable physical properties of phases of fluid membranes [24]. For 
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instance, the osmotic compressibility of the isotropic phase (b) can be obtained Via 
a suitable differentiation of F/V: 

?r = -f + 4 a f / a 4  - 43 (14) 

so that the intensity scattered at zero wave vector is 

I ( 0 )  = 4(a*/a4)-' - 4-1. 

However, an important prerequisite for (13) to be valid is that the small thermal 
ripples can be analysed as combinations of independent normal modes, that is true 
only in the rigid limit (KIT > 1). Only in this limit can the increase of area 
"pared with its projected value be neglected and the dilution be identified with a 
pure dilation. Perturbation calculations worked out recently have shown that the effect 
of small wavelengths' curvature fluctuations is to renormalize the effective values of 
A, K and E. Up to the first order in T / K ,  the following expressions have been 
obtained for the renormalized quantities [26-281: 

A(c)  = ( ~ B T / ~ * K O ) I ~ ( ' $ / ~ ) ]  (16) 

K ( < )  = K - (3kBT/47r) In(E/a) (17) 

K ( c )  = Eo+ (10/cBT/12rr)In(~/a) (18) 
- 

where the subscript 0 stands for the true bare values, A ( € )  is the effective (or 
projected) value of the area of membrane and K ( c )  and E(( )  the effective rigidities. 
a is the short-wavelength molecular cut-off and is the scale length at which the 
effective values are involved. For L, and b, the relevant scale length E is indeed of 
the order of 2, the characteristic structural length. 

As a first consequence, the renormalizations actually break up (to some extent) the 
scale-invariance, since each change in scale implies a redefinition of the membranes' 
characteristics. However, the variations of the effective A, K and are logarithmic 
in (i.e., 2 or 4)  and hence vely slow. As discussed in (291, expression (13) for 
the freeenergy density has to be corrected accordingly. It should still exhibit a main 
43-dependence but be modified by a factor of order In 4, and we expect rather 

f =  F/V-q53(1+cln4). (19) 

Similarly, expression (15) for the &dependence of osmotic compressibility has to 
be modfied. Differentiation of (19) immediately gives 

= 6(a*/a+)-' - [+ln(+/4*)1' (20) 

an expectation that can be checked experimentally using light scattering [29] (an 
example is shown in figure 10). 

More dramatic consequences of the renormalizations - are further expected at 
extreme dilutions. At some stage the scale (i.e., d )  becomes so large that the 
correction term in the expression of the effective rigidity K ( c )  makes it small 
compared with kBT. The bending energy of curvature fluctuations of large amplitudes 
is negligible and we then enter the strong fluctuation regime, where scale-invariance is 
definitely lost. As mentioned in section 2, no immediate notion of a persistence length 
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could be inferred from examination of the bending elasticity of a fluid symmetric 
bilayer. However, the existence of a persistence length E K  is here introduced via 
renormalization of the effective rigidity K(E). Defining E K  as the scale beyond 
which K(C) N 0, we obtain [U)] 

I K  = aexp(4rrKo/3kBT). (21) 

We note that, in contrast with the case of 1D threads, .& does not increase 
linearly with the rigidity, but exponentially. 

Putting together the main features reported in this section, we are driven to a 
quite simple general picture. Starting with a membrane having a bare rigidity KO, 
larger than kBT, one distinguishes two dilution ranges. 

(i) The moderate dilution range, where Kea is still larger than kBT(z e: E K ) .  
The scale-invariance, weakly broken by logarithmic renormalizations, actually rules 
the phase behaviour and the physical properties: the phase boundaries are roughly 
horizontal and the osmotic compressibility scales according to (20). 

(ii) At very high dilution (2 > E K ) ,  K,, is negligible. The phase boundaries are 
no longer horizontal, and the scaling laws derived from the perturbation approach 
are no longer relevant. This regime is totally dominated by the fluctuations. 

6. Smectic order in dilute L,: the steric interaction 

An especially intriguing property of the swollen lamellar phase is the persistence 
of its smectic order at dilutions such that the average intermembrane distance 2 is 
very large compared with the range of the direct molecular forces between bilayers. 
Smectic order implies that some long-range effdive force is present that strongly 
correlates the relative positions of adjacent bilayers in the stacking. 

The nature of this effective interaction was first understood by Helfrich [21] in 
terms of the constraint of non-intersection for nearby membranes. Consider one 
isolated membrane free to fluctuate in 3D space. Due to its thermal curvature 
fluctuations it scans a very large volume in direct space. When confined in between 
two hard walls (or two adjacent membranes), a large number of initially allowed 
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bent conformations is now forbidden by the constraint of non-intersection: the 
configuration entropy of the membrane is thus decreased by confinement. 

The corresponding freeenergy variation A F is positive, leading to the idea of an 
effective repulsive Steric interaction between membranes. Expressed per unit area of 
membrane in the lamellar stacking it has the well known form 1211: 

A F f A  = (3~ /12S) (kBT)2 /K~2 .  (22) 
This expreaion was derived by Helfrich, expanding the microstates of smectic 

stacking into normal modes. A simpler and perhaps more appealing procedure is as 
follows. First, note that the z-2dependence of AFIA simply expresses the scale- 
invariance described above. ?tanslating expression (13) in terms of the freeenergy 
variation per unit area of membranes, one gets immediately 

(23) A F I A  = T P L ( K / T , X / T ) 6  3 I d  -2 . 
(The term linear in 6 in (13) is dropped here because we now consider the 

freeenergy variation compared with that of the free isolated membrane taken as the 
reference state.) Since the confinement does not involve topological changes, x plays 
no role and pL only depends on KIT.  In order to evaluate this dependence, we 
again use a spatial transformation, but different from that used in section 5. 'hking 
Oz as the direction of the director of the smectic phase (direction of the average 
normal of the bilayers) and zOy parallel to the average bilayers, we define the 
transformation TA according to: 

x' = Ax 

y' = Ay (24) 
z' = z 

which relates the coordinates of the generic point r(z, y, z )  to those of its transform 
r'(z',dz') = TA(7), see figure 11. This transformation changes dA into dA' = 
XZdA and each c, and c2 into q / A Z  and c2/A2, but 2 (in the z-direction) remains 
unchanged. Consider (figure 11) two systems (1-system and A-system) of the same 
smectic periodicity d ( d  = 4, containing respective areas of membranes A, and 
A, = A2A,, having respective mean curvature rigidities Kl and K,. 

- +  

1 . system ( K,) 1 . system ( K k  

P@re 11. Steric interaclion in L: a definition of the TA spatial lransfomalion 

Forgetting again the small ripples, the transformation TA carries in a duality 
correspondence between all the microstates of the 1-system and all those of the A-  
system. Dual microstates have the same elastic energy and hence identical statistical 
weights only if 

K ,  = A'K,, 
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Provided that condition AF, and AF, are identical, we have therefore 

A F ( A ,   KIT,^) = A F ( x ~ A , x ~ K / T , Z ) .  (26) 

@ ( K I T )  = X2P(X2K/T) (27) 

Using (U), we immediately get: 

which implies that p( K I T )  is of the form: 

P ( K I T )  T I K .  (28) 

Combining (23) and (B), one obtains a scaling law, having a form identical to 
that of Helfrich (expression (22)): 

( A F I A ) ~  - T ~ I K Z ’ .  (29) 

However, the counterpart of the simplicity of these scaling arguments is that, in 
contrast with Helfrich’s procedure, we cannot predict the magnitude of the prefactor 
in expression (22). 
Since (AF/A)Le varies as 2-’, the effective steric interaction between infinite 

membranes is a long-range force, as required by the existence of smectic order. These 
ideas can actually be checked against experimental data. The freeenera, density can 
be translated in terms of the smectic compressibility B of the lamellar stacking: 

B =  dZ(aZf/ad2),. (30) 

The bending rigidity K,, of smectic stacking, can be expressed immediately as a 
function of that of the individual membrane: 

Ks = K / Z .  (31) 

The smectic elasticity of L, has the usual form: 

where the uqs are the Fourier components of the local displacement U( r) and qz and 
q1 are the coordinates of wave vector q respectively along the r-direction (parallel to 
the director) and in the zy-plane (normal to the director). As first shown by Caill6 
[31] the scattering factor of smectic media is singular at the nominal Bragg position 
qo = 27r/Z and has the form of a power law [32] 

I ( O , O , q , )  - (n, - (33) 

where the exponent U is related to B and K,  as follows: 

U = 4 k B T / 8 r r a .  (34) 
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For smectic stacking, where the membrane positions are correlated by pure Steric 
interaction, B is obtained from (30) and (22); and from (34) we get 

v , ~  = 413. (35) 

The exponent U,, of the B r a g  singularity (at sufficient dilution) is therefore a pure 
universal number. This expectation can be checked by quantitative treatments of the 
scattering pattern of L, samples at different dilutions and from different systems 19- 
111. The data reported in [lo] are especially accurate since they are collected using 
high-resolution x-ray scattering. They were found to be in excellent agreement with 
Helfnch’s expectations: in particular, the measured exponent ust is found to be close 
to the predicted value 413, indicating that the prefactor 3&/128 in the freeenergy 
density (22) as computed by Helfrich is in fact close to reality. 

In principle, the scaling law in (22) should be corrected as well for the logarithmic 
renomalit ions of A, K and x. However, at the present time no measurement of 
B has been accurate enough to show these deviations. On the other hand, thanks to 
the existence of a quite sharp peak at Q,, in La, one can obtain direct evidence for 
the renormalization of the area of membrane A. In the case of totally flat bilayers 
we expect 

Q0=27Tfd 4=6/2. (36) 

4 = 6 A , / a .  (37) 

If the bilayers are submitted to thermal curvature fluctuations, we expect from (16): 

-- 1 Using (16) for the ratio A / A ,  with E = 2 and 4 - d one obtains 

&= 6[a-  (kBT/47rKO)ln4] (38) 

where a is a constant quite close to 1. 
With both q5 and Q,, being measured accurately, the In 4 deviation beyond exact 

invariance is found to be appreciable 115, 25, 331 (see an example in figure 12). 
Moreover, the prefactor being proportional to T /  KO, plotting 42 versus In 4 provides 
a quite simple way to estimate KO once the thickness 6 of the membrane is known 
from some other experimental data [34]. K,, for the bilayers in the L, phase of 
several systems has been measured according to this procedure. As a matter of fact, 
all KOs are found close to k,T (from 0.6k,T to 4kBT). This finding is probably 
related to the fact that the steric interaction decreases when KO increases (K;’- 
dependence): if the membranes are too rigid, the steric interaction is not strong 
enough to overcome the van der Waals’ attractions and the lamellar phase does not 
swell upon dilution. 

7. Symmetry in the & phase 

Actually, the freeenergy cost to make small loops of defects such as rims or seams 
in the membrane is finite. These defects are therefore certainly present in any 
macroscopic volume of L, or &. However, as long as their free energy per unit 
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length is large enough their number density and average size remain small. In this 
limit, their presence will alter the properties of the phase only locally, and it is 
instructive to consider the simplilied picture where they are omitted. The meaning 
of the symmetry of Z, introduced hy Row and co-workers 1291 is then clear and 
unambiguous. 

The surface representing the membrane in L, then divides the 3~ space in two 
and only two subvolumes which, although strongly interwoven, are totally disconnected 
from one another. Designating the two subvolumes at a given place as I and 0, one 
actually generates an unambiguous labelling of the subvolumes everywhere in the 
sample (by the rule that each time a path goes through the bilayer, I is changed into 
0 and conversely). This implies further that the sign of the unit vector normal to the 
surface is unambiguously defined everywhere, once it is specified arbitrarily at any 
given point on the bilayer. A characteristic feature of the bilayer is its symmetry with 
respect to a change of sign of its local normal. This local symmetry h expressed in 
the particular form of the bilayer elasticity (3‘), which is necessarily invariant upon 
changing the signs of both e, and c2. ?he labelling of the subvolumes I and 0 
is therefore arbitrary, so that any Hamiltonian aiming to describe the system must 
be invariant under a global change of I and 0. This exact local symmetry implies 
that the two subvolumes in should be, in general, statistically identical. But, it 
also raises the possibility that this global symmetry may be broken spontaneously for 
some appropriate conditions. In spite of its above-mentioned artificialities, a basic 
interest of the random-mixing model of section 4 is that it predicts such a spontaneous 
breaking of the global symmetry explicitly. 

However, for the sake of generality, it is worthwhile avoiding a too strongly 
specified model. Following [29], we first define an order parameter q appropriately 
related to the degree of asymmetly of the phase. Such a choice is somewhat arbitrary 
and one could for instance take TJ = 1/2 - Q where Q is the volume fraction of [I]: 
then we have +j = 0 in the symmetric case and +j # 0 in the asymmetric one. One 
can prefer an order parameter reflecting the average state of the membrane rather 
than that of the subvolumes [I] and [O].  A more appropriate choice should then be 
q = ( c I + ~ ) ~  since here again i j  = 0 characterizes the symmeaic state and i j  # 0 the 
asymmetric one. Since our purpose is to build up an effective-Landau Hamiltonian, 
the specific choice of q is actually not of crucial importance. Considering now one 
situation with an average volume fraction of membrane 3 we define p = 4- 3, which 
characterizes the local deviation from the mean concentration 3 of amphiphiles. The 
effective-Landau Hamiltonian involving the two order parameters p and q takes the 
form 

H = pp + XpZ + PTJ’ + 6v4 + v m ’ ,  (39) 

Since no particular symmetry is associated with p, odd powers of p are allowed 
( p  is here chosen such that i j  = 0). In contrast, TJ has to reflect the exact symmetry 
of the membrane and only even powers of TJ are allowed. The most important 
consequence of the symmetry is that the term of lowest order in (39) which couples 
p and TJ is necessarily pq2. This coupling term is quadratic in q and actually has a 
unique consequence on the light scattering pattern of Z, samples. The intensity of 
the light scattered by the sample arises from the fluctuations of p but not directly 
from that of q. However, due to the coupling term up?’, fluctuations of TJ will 
affect the statistics of the p-fluctuations. In this sense, the scattering pattern will be 
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sensitive to d-fluctuations, but in an indirect way. 'Ib investigate this point we must 
use a Landau-Ginzburg Hamiltonian. The simplest way to do this is to add a gradient 
term for q : y(lVq12) in (39). We neglect the gradient term for p consistently with 
the expectation that far from Critical conditions the correlation length of p is small 
(basically of order 2). With this modification, the LG Hamiltonian can be written 
equivalently: 

H u =  P ( P + ~ ' ~ * / ~ X ) + X ( ~ + U ~ ~ / ~ X ) ~ + ( P - ~ U / ~ X ) ~ ~ + ( ~ - U ~ / ~ X ) ~ ~  

+ Y( lVd2) .  (40) 

Having so diagonalized HLG, it is clear that the intemal variables ( p +  uq2/2X)  and 
q have independent fluctuations (no coupling term between them). pdr from critical 
conditions, the q4-term can be neglected and q simply shows gawian fluctuations 
with a distribution controlled by (0 - p u / Z X ) .  Thus, we simply expect 

(q(~)q(~)) = e-r't-/47r7r (41) 

where E, = 7/2(p  - pu/2X). 

variance 1/2X around a mean value depending on the actual local value of ~ ( r ) :  
From (40) the local value of p ( r )  has a gaussian probability distribution with 

( P  - W2(.))/2A. (42) 

( d O ) ~ ( r ) )  = [ ( ~ ( o ) ~ t l ( r Y )  - ( ~ ~ ) ~ 1 / x ~  + b(r)/zx.  

( l l z ( o ) V z ( T ) )  = (V2)2 + 2(17(o)V(r))z 

( p ( o ) p ( r ) )  = (1/XZ)e-2'/E~/(47ryr)2 + b ( r ) / ~ ~ .  

Thus, we obtain for the density-lensity correlation function: 

(43) 

Since the fluctuations of 11 are gaussian: 

(44) 

we can write directly: 

(45) 

The scattering pattern on a large scale ( q  < 27r/d) is simply obtained by Fourier 
transformation of (45) and it has the very unusual form: 

l(n) = c1[c2 + arctan(q~,/2)/(q~,/2)1 (46) 

where c1 and e, are related to A, 7 and F,  in a straightfonvard way. This form 
(equation (46)) is ve'y different from the usual Ornstein-Zemicke q-dependence: at 
high q, the arctan term decays asymptotically as q-' rather than q-2. This unique 
dependence arises from the quadratic coupling between p and 7 in (39). 

These ideas of a hidden symmetry in & can therefore be checked unambiguously 
from classical light scattering measurements. An example of such data is shown in 
figure 13 where fits with the usual 02-form and with (46) are given for the sake of 
comparison. Other ve'y convincing experimental data are reported in  [25] for other 
systems, supporting strongly the relevance of the 11-fluctuations. Moreover, form 
(46) only applies for the symmetric case: in the asymmetric case where v fluctuates 
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around a finite mean value i j  the lower-order coupling term with p-fluctuations would 
be indeed linear (of the form p(q  -si)) and a more conventional 02-depcndcnce of 
I ( q )  would be expected. Thus, the above-mentioned data prove that & is symmetric 
over large portions of its domain of stability. 

This structure is 
certainly not stable at extreme dilution: at some stage, the entropy of dispersion 
of disconnected pieces must overcompensate the cohesion energy of the infinite 
membrane. Keeping the picture of surfaces with no rims, we expect the membrane to 
sulvive in the form of a random distribution of closed vesicles, and the statistical 
symmetry between I and 0 subvolumes is no longer respected. Therefore, the 
symmetry in L, has to break at some point upon dilution. Much effort is currently 
being spent, in order to check whether the transition is continuous or not. Currently 
available data are in favour of a continuous transition [35], at least in some systems. 
Note however that form (46) for I ( q )  is restricted to the case of gaussian statistics 
for q. This is obviously wrong close to the transition line. More detailed discussions 
of these interesting issues can be found in [36]. 

Symmetric r, basically consists of one infinite bilayer. 

8. Conclusion 

We have described how amphiphilic molecules can self-assemble into fluctuating 2D 
membranes, even in the dilute range. The phases so obtained actually provide exact 
experimental realizations of flexible random surfaces being confined in the limited 
volume of the samples. The statistics of these ZD objects is controlled by their bending 
elasticity. However, working out the corresponding statistical problem completely is 
actually out of our reach at the present time. 

The two dilute phases of fluid membranes characterized here have very different 
structures on a large scale. The swollen lamellar phase L, shows smectic order 
and the topology of the membranes is simply connected, just like that of planes. 
On the other hand, the anomalous isotropic phase shows no long-range order 
and the membranes are multiconnected over macroscopic distances along the three 
directions of space. Actually, the phase behaviour in the moderately dilute range can 
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be rationalized, at least qualitatively, in terms of the bendink elasticity (K and x) 
of the bilayers: K controls the curvature fluctuations, while K drives the topological 
transformations 

A remarkable property of the elastic Hamiltonian is its invariance with respect 
to dilation. This results, for the membranes’ statistics, into a scale-invariance weakly 
broken by logarithmic renormalizations. This invariance rules the evolution of the 
physical properties of the phases upon dilution (scaling laws). The effects of the 
renormalizations are mild in the moderate dilution range but ultimately lead to a 
strong fluctuation regime at high dilution. 

The striking persistence of the smectic order of the swollen lamellar phase can be 
understood in terms of the Helfrich steric interaction, arising from the constraint 
of non-intersection for nearby membranes. The TZK-1d-2dependence of the 
corresponding freeenergy density per unit area of membranes k again derived from 
simple scaling arguments. 

Finally, the exact local sy”etIy of the bilayer, with respect to changing the sign 
of its normal, implies the existence of a statistical global symmetry in the way it 
separates space in two disconnected subvolumes. The global symmetry of must 
break at some stage at high dilution. The quadratic coupling of the order parameter 
of the symmetry to the local concentration of membranes implies a very unusual 
q-dependence for the scattering factor of symmetric L, at low q. This remarkable 
feature is beautifully confirmed from light scattering experiments reported on various 
systems. 

Some considerations on this last point must be stressed as an interesting further 
issue in this subject. In principle, the global symmetry described above only makes 
sense in the case of membranes totally free of ‘holes’. But actually, the presence 
of a low density of small holes should not affect the situation too strongly: an ideal 
defect-free surface can be (mentally) drawn by continuity over such small defects: so 
the labelling of [I] and [0] remains uniquely defined. However, this is certainly no 
longer possible in a unique way if the average size of the holes becomes very large. 

The excess energy associated with the formation of holes can be characterized by 
the line tension X per unit length of edge on the membrane. At sufficiently high A, 
holes are scarce and small and the symmetry remains well defined. Upon lowering 
X below some critical value A,, the configurational entropy of large random loops 
compensates the energy @st due to the line tension: at A,, the average contour 
length of the edge loops diverges. This raises the possibility of a phase consisting of 
an infinite multiconnected membrane bearing infinite edges: Huse and Leibler call 
this phase the ‘sponge with free edges’ [37]. Of course, helow X, subvolumes I and 
0 can no longer be distinguished and the idea of global symmetry makes no sense. 

Interestingly, the line tension X is certainly related to cu, the spontaneous 
curvature of the amphiphilic films: increasing cu decreases A. So we guess that X can 
be monitored experimentally by the same external parameters (salinity, composition 
of the bilayer) as those which have been shown to tune (see section 3). Gathering 
these considerations on the symmetry [29] and on the line tension [37], together 
with the necessity that at extreme dilution everything must end up with disconnected 
vesicles and/or micelles, we expect phases of fluid membranes to exhibit very rich and 
unique behaviours in the high-dilution regime. We hope that experimental facts will 
soon be reported illustrating these expectations. 
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